Connectome Data
 
 

Numerous studies have examined the neuronal inputs and outputs of many areas within the mammalian cerebral cortex, but how these areas are organized into neural networks that communicate across the entire cortex is unclear. Over 600 labeled neuronal pathways acquired from tracer injections placed across the entire mouse neocortex enabled us to generate a cortical connectivity atlas. A total of 240 intracortical connections were manually reconstructed within a common neuroanatomic framework, forming a cortico-cortical connectivity map that facilitates comparison of connections from different cortical targets. Connectivity matrices were generated to provide an overview of all intracortical connections and subnetwork clusterings. The connectivity matrices and cortical map revealed that the entire cortex is organized into four somatic sensorimotor, two medial, and two lateral subnetworks that display unique topologies and can interact through select cortical areas. Together, these data provide a resource that can be used to further investigate cortical networks and their corresponding functions.


 
 

We present a cortico-striatal projectome that describes projections from the entire cortex to the dorsal striatum in the mouse. Computational neuroanatomic analysis of these projections identified 11 regional communities comprised of 29 smaller distinct striatal domains. This connectomics approach was applied to characterize circuit-specific cortico-striatal connectopathies in two mouse models of disconnection syndrome for Huntington's disease and autism spectrum disorder.


 
 

Understanding the organization of the hippocampus is fundamental to understanding brain function related to learning, memory, emotions, and diseases like Alzheimer's disease. Physiological studies in humans and rodents suggest both structural and functional heterogeneity along the longitudinal axis of the hippocampus. Yet the recent discovery of discrete gene expression domains within the mouse hippocampus has provided the opportunity to re-evaluate hippocampal connectivity. To integrate mouse hippocampal gene expression and connectivity, we mapped the distribution of distinct gene expression patterns within mouse hippocampus and subiculum to create the Hippocampus Gene Expression Atlas (HGEA). Notably, novel subiculum gene expression patterns revealed a hidden laminar organization. Guided by the HGEA, we constructed the most detailed hippocampal connectome available using Mouse Connectome Project (www.MouseConnectome.org) tract tracing data. Our results define the hippocampus' multiscale network organization and demonstrate each subnetwork's unique brain-wide connectivity patterns.


 

Corticothalamic projecting neurons in the mouse dorsolateral geniculate thalamus. Novel extrastriate projections to VISam and VISpm were found localized to a ventral strip region adjacent to the border with the intergeniculate leaflet (IGL). Results are cross‐validated by systematic bidirectional tract tracing with anterograde/retrograde coinjections.


 

Characterizing the precise three-dimensional morphology and anatomical context of neurons is crucial for neuronal cell type classification and circuitry mapping. Recent advances in tissue clearing techniques and microscopy make it possible to obtain image stacks of intact, interweaving neuron clusters in brain tissues. As most current 3D neuronal morphology reconstruction methods are only applicable to single neurons, it remains challenging to reconstruct these clusters digitally. To advance the state of the art beyond these challenges, we propose a fast and robust method named G-Cut that is able to automatically segment individual neurons from an interweaving neuron cluster. Across various densely interconnected neuron clusters, G-Cut achieves significantly higher accuracies than other state-of-the-art algorithms. G-Cut is intended as a robust component in a high throughput informatics pipeline for large-scale brain mapping projects.